Artificial intelligence and multimodal diagnostic approaches in cardiovascular disease

Authors

DOI:

https://doi.org/10.47487/apcyccv.v6i4.532

Keywords:

Artificial Intelligence, Machine Learning, Diagnostic Techniques, Cardiovascular, Precision Medicine

Abstract

Objective. Evaluate the impact and clinical applicability of artificial intelligence (AI) models in cardiovascular diagnosis, assessing their potential to improve diagnostic accuracy, operational efficiency, and reliability compared with conventional methods. Materials and Methods. A critical review of the recent literature was conducted, encompassing retrospective studies, multicenter trials, and external validations that employed machine learning and deep learning algorithms applied to imaging modalities, electrocardiographic and phonocardiographic signals, as well as clinical and proteomic biomarkers. Results. Evidence indicates that in cardiac imaging, automated segmentation and ventricular dysfunction detection achieved accuracy metrics exceeding 90%, suggesting readiness for clinical integration. In cardiac signals, deep learning models demonstrated area under the ROC curve values of approximately 0.99 for predicting atrial fibrillation and ischemic heart disease, further supported by explainability techniques. Regarding biomarkers, ensemble models achieved diagnostic accuracies above 95%, and the integration of proteomic and clinical data substantially enhanced predictive performance. Nonetheless, decreased performance in external validations, limited generalizability to heterogeneous populations, and clinicians’ reluctance due to insufficient explainability remain major barriers. Conclusion. Artificial intelligence in cardiovascular diagnostics holds transformative potential by improving accuracy, reducing interobserver variability, and expanding access in resource-limited settings. However, its consolidation into routine practice requires robust multicenter validations, seamless interoperability with clinical workflows, and strengthened explainability, prerequisites for incorporation into clinical guidelines and precision medicine strategies.

Downloads

Download data is not yet available.

References

Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi: 10.1038/ s41591-018-0300-7.

Shortliffe EH, Buchanan BG. A model of inexact reasoning in medicine. Math. Biosci. 1975;23(3-4):351-79. doi: 10.1016/0025- 5564(75)90047-4.

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-8. doi: 10.1038/nature21056.

Yao X, Rushlow DR, Inselman JW, McCoy RG, Thacher TD, Behnken EM, et al. Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nat Med. 2021;27(5):815-9. doi: 10.1038/ s41591-021-01335-4.

Kwon D, Kang H, Lee D, Kim YC. Deep learning-based prediction of atrial fibrillation from polar transformed time-frequency electrocardiogram. PLoS ONE. 2025;20(3):e0317630. doi: 10.1371/ journal.pone.0317630.

Climente-González H, Oh M, Chajewska U, Hosseini R, Mukherjee S, Gan W, et al. Interpretable machine learning leverages proteomics to improve cardiovascular disease risk prediction and biomarker identification. Commun Med. 2025;5(1):170. doi: 10.1038/s43856- 025-00872-0.

Yu AC, Mohajer B, Eng J. External Validation of Deep Learning Algorithms for Radiologic Diagnosis: A Systematic Review. Radiol Artif Intell. 2022;4(3):e210064. doi: 10.1148/ryai.210064.

Dietterich T. Overfitting and undercomputing in machine learning. ACM Comput Surv. 1995;27(3):326-7. doi: 10.1145/212094.212114.

Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med. 2019;380(14):1347-58. doi: 10.1056/NEJMra1814259.

Berkebile JA, Inan OT, Beach PA. Wearable multimodal sensing for quantifying the cardiovascular autonomic effects of levodopa in parkinsonism. Front Netw Physiol. 2025;5:1543838. doi: 10.3389/ fnetp.2025.1543838.

Pezel T, Toupin S, Bousson V, Hamzi K, Hovasse T, Lefevre T, et al. A Machine Learning Model Using Cardiac CT and MRI Data Predicts Cardiovascular Events in Obstructive Coronary Artery Disease. Radiology. 2025;314(1):e233030. doi: 10.1148/radiol.233030.

Obermeyer Z, Emanuel EJ. Predicting the Future — Big Data, Machine Learning, and Clinical Medicine. N Engl J Med. 2016;375(13):1216-9. doi: 10.1056/NEJMp1606181.

Collins FS, Varmus H. A New Initiative on Precision Medicine. N Engl J Med. 2015;372(9):793-5. doi: 10.1056/NEJMp1500523.

Lal S. TC-SegNet: robust deep learning network for fully automatic two-chamber segmentation of two-dimensional echocardiography. Multimed Tools Appl. 2024;83(2):6093-111. doi: 10.1007/s11042-023- 15524-5.

Morales-Galan A, Lopez-Gutierrez P, Garrido-Oliver J, DuxSantoy L, Majul H, Rivas Catoni L, et al. Artificial intelligence for automatic echocardiography image view detection and left ventricle segmentation and ejection fraction prediction. Eur Heart J Cardiovasc. Imaging. 2025;26(Supplement_1):jeae333.031. doi: 10.1093/ehjci/jeae333.031.

Arafati A, Morisawa D, Avendi MR, Amini MR, Assadi RA, Jafarkhani H, et al. Generalizable fully automated multi-label segmentation of four-chamber view echocardiograms based on deep convolutional adversarial networks. J R Soc Interface. 2020;17(169):20200267. doi: 10.1098/rsif.2020.0267.

Zamzmi G, Rajaraman S, Hsu LY, Sachdev V, Antani S. Realtime echocardiography image analysis and quantification of cardiac indices. Med Image Anal. 2022;80:102438. doi: 10.1016/j. media.2022.102438.

Geven BWM, Zhao D, Creamer SA, Dillon JR, Quill GM, Edwards NC, et al. Automated Quality-Controlled Left Heart Segmentation from 2D Echocardiography. In: Camara O, Puyol-Antón E, Sermesant M, Suinesiaputra A, Tao Q, Wang C, et al., editors. Statistical Atlases and Computational Models of the Heart Regular and CMRxRecon Challenge Papers [Internet]. Cham: Springer Nature Switzerland; 2024 [citado el 16 de agosto de 2025]. p. 98- 107. Disponible en: https://doi.org/10.1007/978-3-031-52448-6_10

Vaid A, Johnson KW, Badgeley MA, Somani SS, Bicak M, Landi I, et al. Using Deep-Learning Algorithms to Simultaneously Identify Right and Left Ventricular Dysfunction From the Electrocardiogram. JACC Cardiovasc Imaging. 2022;15(3):395-410. doi: 10.1016/j. jcmg.2021.08.004.

Lee E, Ito S, Miranda WR, Lopez-Jimenez F, Kane GC, Asirvatham SJ, et al. Artificial intelligence-enabled ECG for left ventricular diastolic function and filling pressure. npj Digit Med. 2024;7(1):4. doi: 10.1038/ s41746-023-00993-7.

Zhang WL, Song B, Huang QJ, Quan WW, Zhang RY. Artificial intelligence for automated left ventricular systolic dysfunction detection using a wearable cardiac patch incorporated with synchronized phonocardiogram and electrocardiogram. Eur Heart J. 2024;45(Supplement_1):ehae666.3551. doi: 10.1093/eurheartj/ ehae666.3551.

Shiraga T, Makimoto H, Kohlmann B, Magnisali CE, Imai Y, Itani Y, et al. Improving Valvular Pathologies and Ventricular Dysfunction Diagnostic Efficiency Using Combined Auscultation and Electrocardiography Data: A Multimodal AI Approach. Sensors. 2023;23(24):9834. doi: 10.3390/s23249834.

Muthulakshmi M, Kavitha G. Deep CNN with LM learning based myocardial ischemia detection in cardiac magnetic resonance images. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) [Internet]. Berlin, Germany: IEEE; 2019 [citado el 16 de agosto de 2025]. p. 824-7. Disponible en: https://doi.org/10.1109/EMBC.2019.8856838

Cho GW, Sayed S, D’Costa Z, Karlsberg DW, Karlsberg RP. First comparison between artificial intelligence-guided coronary computed tomography angiography versus single-photon emission computed tomography testing for ischemia in clinical practice. Coron Artery Dis. 2025;36(5):390-5. doi: 10.1097/mca.0000000000001485.

Gonciar D, Berciu AG, Dulf EH, Orzan RI, Mocan T, Danku AE, et al. Computer-Assisted Algorithm for Quantification of Fibrosis by Native Cardiac CT: A Pilot Study. J Clin Med. 2024;13(16):4807. doi: 10.3390/ jcm13164807.

Curiale AH, Cabrera F, Jimenez P, Medus J, Mato G, Calandrelli ME. Detection of Fibrosis in Cine Magnetic Resonance Images Using Artificial Intelligence Techniques. arXiv. 2022;arXiv:2206.01745. doi: 10.48550/arXiv.2206.01745.

Campese S, Agostini F, Sciarretta T, Pizzi M, Cipriani A, Zanetti M. Myocardial fibrosis detection using kernel methods: preliminary results from a cardiac magnetic resonance study. Eur Heart J Cardiovasc. Imaging. 2022;23(Supplement_2):jeac141.005. doi: 10.1093/ehjci/jeac141.005.

Michalski B, Skonieczka S, Strzelecki M, Simiera M, Kupczyńska K, Szymczyk E, et al. The use of artificial intelligence for predicting postinfarction myocardial viability in echocardiographic images. Cardiol J. 2024;31(5):699-707. doi: 10.5603/cj.93887.

Kumari SV, Lucas BR, Anitha C, Sangeetha SB, Santhi P, Raja RA, et al. Dense Residual Network-Powered Early Detection of Cardiovascular Diseases Using Multimodal Medical Imaging. J Neonatal Surg. 2025;14(6S):175-86. doi: 10.52783/jns.v14.2221.

Patel KK, Kanodia A, Kumar B, Gupta R. Multi-Modal Data Fusion Based Cardiac Disease Prediction using Late Fusion and 2D CNN Architectures. In: 2024 11th International Conference on Signal Processing and Integrated Networks (SPIN) [Internet]. Noida, India: IEEE; 2024 [citado el 16 de agosto de 2025]. p. 279-84. Disponible en: https://doi.org/10.1109/SPIN60856.2024.10512195

Shen L, Zhang X, Huang S, Wu B, Li J. A diagnostic method for cardiomyopathy based on multimodal data. Biomed Tech (Berl). 2023;68(4):411-20. doi: 10.1515/bmt-2023-0099.

Mota D, Filho FNB, Sousa EB, Chagas RA, Sassaki EM, Candoti MW, et al. Comparative analysis of classical artificial intelligence and deep learning models for atrial fibrillation detection in electrocardiograms. Europace. 2024;26(Supplement_1):euae102.583. doi: 10.1093/ europace/euae102.583.

Jin Y, Ko B, Chang W, Choi KH, Lee KH. Explainable paroxysmal atrial fibrillation diagnosis using an artificial intelligence-enabled electrocardiogram. Korean J Intern Med. 2025;40(2):251-61. doi: 10.3904/kjim.2024.130.

Wu C, Hwang M, Huang TH, Chen YMJ, Chang YJ, Ho TH, et al. Application of artificial intelligence ensemble learning model in early prediction of atrial fibrillation. BMC Bioinformatics. 2021;22(S5):93. doi: 10.1186/s12859-021-04000-2.

Taniguchi H, Takata T, Takechi M, Furukawa A, Iwasawa J, Kawamura A, et al. Explainable Artificial Intelligence Model for Diagnosis of Atrial Fibrillation Using Holter Electrocardiogram Waveforms. Int Heart J. 2021;62(3):534-9. doi: 10.1536/ihj.21-094.

Zhong D, Huang L, Jin S, An Y, Zhu S, Li J. Automatic electrocardiograph diagnosis of myocardial ischemia with support vector machine. Digit Med. 2023;9(2):e00009. doi: 10.1097/DM-2023-00009.

Zhao X, Zhang J, Gong Y, Xu L, Liu H, Wei S, et al. Reliable Detection of Myocardial Ischemia Using Machine Learning Based on TemporalSpatial Characteristics of Electrocardiogram and Vectorcardiogram. Front Physiol. 2022;13:854191. doi: 10.3389/fphys.2022.854191.

Braun T, Spiliopoulos S, Veltman C, Hergesell V, Passow A, Tenderich G, et al. Detection of myocardial ischemia due to clinically asymptomatic coronary artery stenosis at rest using supervised artificial intelligence-enabled vectorcardiography – A five-fold cross validation of accuracy. J Electrocardiol. 2020;59:100-5. doi: 10.1016/j. jelectrocard.2019.12.018.

Jiang Z, Song W, Yan Y, Li A, Shen Y, Lu S, et al. Automated valvular heart disease detection using heart sound with a deep learning algorithm. Int J Cardiol Heart Vasc. 2024;51:101368. doi: 10.1016/j. ijcha.2024.101368.

Ma S, Chen J, Ho JWK. An edge-device-compatible algorithm for valvular heart diseases screening using phonocardiogram signals with a lightweight convolutional neural network and self-supervised learning. Comput Methods Programs Biomed. 2024;243:107906. doi: 10.1016/j.cmpb.2023.107906.

Jamil S, Roy AM. An efficient and robust Phonocardiography (PCG)- based Valvular Heart Diseases (VHD) detection framework using Vision Transformer (ViT). Comput Biol Med. 2023;158:106734. doi: 10.1016/j.compbiomed.2023.106734.

Rancier MA, Israel I, Monickam V, Prince J, Verschoore B, Currie C. Abstract 13244: Real World Evaluation of an Artificial Intelligence Enabled Digital Stethoscope for Detecting Undiagnosed Valvular Heart Disease in Primary Care. Circulation. 2023;148(Suppl_1). doi: 10.1161/circ.148.suppl_1.13244.

Begic E, Gurbeta Pokvic L, Begic Z, Begic N, Dedic M, Mrsic D, et al. From Heart Murmur to Echocardiography - Congenital Heart Defects Diagnostics Using Machine-Learning Algorithms. Psychiatr Danub. 2021;33(Suppl 13):236-46.

Xu C, Li X, Zhang X, Wu R, Zhou Y, Zhao Q, et al. Cardiac murmur grading and risk analysis of cardiac diseases based on adaptable heterogeneous-modality multi-task learning. Health Inf Sci Syst. 2023;12(1):2. doi: 10.1007/s13755-023-00249-4.

Özcan F. Rapid detection and interpretation of heart murmurs using phonocardiograms, transfer learning and explainable artificial intelligence. Health Inf Sci Syst. 2024;12(1):43. doi: 10.1007/s13755- 024-00302-w.

Tonni SI, Alam MA, Sohel A, Khan C, Onik MdKR, Pranto IH. Predictive Modeling of Cardiovascular Disease Using Machine Learning: A Comparative Analysis. In: 2025 5th International Conference on Advanced Research in Computing (ICARC) [Internet]. Belihuloya, Sri Lanka: IEEE; 2025 [citado el 16 de agosto de 2025]. p. 1-6. Disponible en: http://doi.org/10.1109/ICARC64760.2025.10963191

Sembina G, Aitim A, Shaizat M. Machine Learning Algorithms for Predicting and Preventive Diagnosis of Cardiovascular Disease. In: 2022 International Conference on Smart Information Systems and Technologies (SIST) [Internet]. Nur-Sultan, Kazakhstan: IEEE; 2022 [citado el 16 de agosto de 2025]. p. 1-5. Disponible en: http://doi. org/10.1109/SIST54437.2022.9945708

Kumar HS, Sirapu T, T S, Penubaka KKR, Reddy PRKK, Supriya PL. Investigating the Prediction of Cardiovascular Diseases using Different Machine Learning Methods. In: 2025 International Conference on Intelligent Computing and Control Systems (ICICCS) [Internet]. Erode, India: IEEE; 2025 [citado el 16 de agosto de 2025]. p. 929-35. Disponible en: https://doi.org/10.1109/ ICICCS65191.2025.10985574

Ekong A. Evaluation of Machine Learning Techniques Towards Early Detection of Cardiovascular Diseases. American Journal of Artificial Intelligence. 2023;7(1):6-16. doi: 10.11648/j.ajai.20230701.12.

Downloads

Published

2025-11-28

Issue

Section

Review articles