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RESUMEN

Review article

Artificial intelligence and multimodal diagnostic approaches in 
cardiovascular disease
Fernando A. Ramos-Zaga 1,a

Inteligencia artificial y enfoques diagnósticos multimodales 
en enfermedad cardiovascular

Objetivo. Evaluar el impacto y la aplicabilidad clínica de los modelos de inteligencia artificial (IA) en el 
diagnóstico cardiovascular, analizando su capacidad para mejorar la precisión, la eficiencia operativa y 
la confiabilidad en comparación con métodos convencionales. Materiales y métodos. Se realizó una 
revisión crítica de la literatura reciente, incluyendo estudios retrospectivos, multicéntricos y validaciones 
externas que aplicaron algoritmos de machine learning y deep learning a modalidades de imagen, señales 
electrocardiográficas y fonocardiográficas, así como biomarcadores clínicos y proteómicos. Resultados. Los 
hallazgos muestran que en imágenes cardíacas, la segmentación automática y la detección de disfunción 
ventricular alcanzan métricas de precisión superiores al 90%, con potencial de integración clínica. En 
señales cardíacas, el deep learning ha demostrado áreas bajo la curva ROC cercanas a 0,99 en la predicción 
de fibrilación auricular y cardiopatía isquémica, reforzadas por técnicas explicables. En biomarcadores, los 
modelos de ensemble superaron el 95% de precisión diagnóstica y la integración de proteómica con datos 
clínicos incrementó la capacidad predictiva. Sin embargo, se observó una disminución en el desempeño 
de validaciones externas, limitaciones en la generalización a poblaciones heterogéneas y reticencia por la 
escasa explicabilidad de algunos algoritmos. Conclusión. La IA aplicada al diagnóstico cardiovascular exhibe 
un potencial transformador al mejorar la precisión diagnóstica, reducir la variabilidad y ampliar el acceso a 
entornos con recursos limitados. No obstante, su consolidación en la práctica clínica requiere validaciones 
multicéntricas, interoperabilidad con flujos clínicos reales y fortalecimiento de la explicabilidad, condiciones 
esenciales para su inclusión en guías de práctica clínica y medicina de precisión.

Palabras clave: Inteligencia Artificial; Aprendizaje Automático; Técnicas de Diagnóstico Cardiovascular; 
Medicina de Precisión (Fuente: DeCS-BIREME).

ABSTRACT

Objective. Evaluate the impact and clinical applicability of artificial intelligence (AI) models in cardiovascular 
diagnosis, assessing their potential to improve diagnostic accuracy, operational efficiency, and reliability 
compared with conventional methods. Materials and Methods. A critical review of the recent literature was 
conducted, encompassing retrospective studies, multicenter trials, and external validations that employed 
machine learning and deep learning algorithms applied to imaging modalities, electrocardiographic and 
phonocardiographic signals, as well as clinical and proteomic biomarkers. Results. Evidence indicates that 
in cardiac imaging, automated segmentation and ventricular dysfunction detection achieved accuracy 
metrics exceeding 90%, suggesting readiness for clinical integration. In cardiac signals, deep learning models 
demonstrated area under the ROC curve values of approximately 0.99 for predicting atrial fibrillation and 
ischemic heart disease, further supported by explainability techniques. Regarding biomarkers, ensemble 
models achieved diagnostic accuracies above 95%, and the integration of proteomic and clinical data 
substantially enhanced predictive performance. Nonetheless, decreased performance in external validations, 
limited generalizability to heterogeneous populations, and clinicians’ reluctance due to insufficient 
explainability remain major barriers. Conclusion. Artificial intelligence in cardiovascular diagnostics holds 
transformative potential by improving accuracy, reducing interobserver variability, and expanding access 
in resource-limited settings. However, its consolidation into routine practice requires robust multicenter 
validations, seamless interoperability with clinical workflows, and strengthened explainability, prerequisites 
for incorporation into clinical guidelines and precision medicine strategies.

Keywords: Artificial Intelligence; Machine Learning; Diagnostic Techniques, Cardiovascular; Precision 
Medicine (Source: MeSH-NLM).
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Introduction

Cardiovascular diagnostics are undergoing a transitional phase 
driven by the integration of artificial intelligence (AI) tools 
across multiple levels of clinical practice. The convergence 
of advances in imaging modalities, cardiac signal analysis, 
and biomarker technologies has created unprecedented 
opportunities to enhance diagnostic accuracy, efficiency, 
and scalability (1). This evolution, however, is not occurring 
in isolation: it is shaped by the rising global prevalence of 
cardiovascular diseases and the imperative to optimise 
resources within increasingly strained health systems.

Interest in applying algorithms to the medical field dates 
back to the earliest expert systems (2), later evolving into 
machine learning methods and, more recently, deep learning 
approaches applied to imaging and physiological signals (3). In 
cardiology, these strategies have enabled notable advances, 
including the automated detection of ventricular dysfunction 
(4), the prediction of atrial fibrillation from sinus-rhythm 
electrocardiograms (5), and the integration of proteomic 
biomarkers with large-scale clinical datasets (6).

Nonetheless, a persistent gap remains between the 
technical performance of these models and their clinical 
maturity. Despite outstanding metrics in controlled research 
settings, multicentre studies have shown substantial declines 
in performance when algorithms are applied to heterogeneous 
populations or to imaging and signal data of variable quality 
(7). This issue, described in the computer science literature as a 
generalisation challenge (8), is particularly salient in cardiology, 
where the wide diversity of phenotypes and comorbidities 
demands methodological robustness and flexibility.

The rationale for advancing this field lies in the fact that 
current developments have yet to translate into routine 
clinical practice. Outstanding performance metrics reported 
in retrospective studies contrast with the limited availability 
of longitudinal, external, and multicentre validations needed 
to demonstrate true clinical utility (9). In addition, the lack of 
sufficient interpretability reinforces clinicians’ reluctance to 
adopt “black-box” algorithms, hindering their integration into 
decision-making processes.

The practical implications of this evolution are 
considerable. An AI system capable of robustly interpreting 
images, electrocardiograms, and biomarkers could not only 
optimise diagnostic processes in specialised settings, but also 
expand access in resource-limited contexts through portable 
devices and automated analyses (10). Likewise, the integration 
of multimodal information would enable clinicians to 
address clinical complexity from a more holistic perspective, 
overcoming the constraints of unimodal approaches (11).

The issues outlined above intersect with broader 
contemporary challenges in medicine, including the need 
to develop ethical and transparent models, to prevent 
algorithmic bias, and to ensure that technological innovations 

do not exacerbate existing structural inequalities (12). They 
also align with the priorities of precision medicine, which 
aims to integrate molecular, clinical, and population-level 
data to individualise care (13). Thus, the debate surrounding 
the maturity of AI in cardiology extends beyond technical 
considerations and moves into spheres of social, ethical, and 
economic relevance.

Within this context, the aim of this work is to critically 
examine recent advances in AI-assisted cardiovascular 
diagnostics, encompassing imaging modalities, cardiac 
signals, and biomarkers, in order to establish a reference 
framework for assessing their maturity, accuracy, and clinical 
applicability across diverse settings. The contribution of this 
article lies in providing a synthesis that highlights both current 
opportunities and limitations, thereby paving the way for a 
more robust, interpretable, and equitable integration of AI 
into cardiovascular clinical practice.

Materials and methods

This article adopts a critical narrative review format following the 
SANRA (Scale for the Assessment of Narrative Review Articles) 
framework, as its primary aim is to integrate and interpret recent 
evidence on AI in cardiovascular diagnostics, with particular 
attention to its clinical applicability and degree of technological 
maturity. This approach enables the findings to be contextualised 
within a broader theoretical and clinical framework, moving 
beyond the simple aggregation of quantitative results and 
offering a more conceptual understanding of the phenomenon.

The methodological purpose was to identify, examine, and 
critically discuss recent advances in the use of AI for cardiovascular 
diagnosis through imaging, signal analysis, and biomarkers. 
The review aims to assess the robustness, interpretability, and 
clinical applicability of these models, highlighting both their 
achievements and their limitations in medical practice.

We included original studies (prospective, retrospective, 
multicentre, or clinical) that met the following criteria: a) 
application of AI models to cardiovascular diagnosis using 
imaging, signal analysis, or biomarkers; b) reporting of 
quantitative performance metrics (area under the curve [AUC], 
sensitivity, specificity, F1-score, or others); and c) availability 
of internal or external validation. Narrative reviews, editorials, 
conference abstracts, conceptual studies without empirical 
data, and articles lacking diagnostic metrics or a validated 
clinical application were excluded.

The literature search was conducted between January and 
August 2025. Combinations of controlled and uncontrolled 
terms were applied using Boolean operators: (“artificial 
intelligence” OR “machine learning” OR “deep learning”) 
AND (“cardiovascular diagnosis” OR “cardiac imaging” OR 
“electrocardiogram” OR “biomarkers”). Articles published 
between 2018 and 2025 in English or Spanish were included 
to capture the most influential contemporary literature.

The initial search across Scopus, PubMed, and IEEE Xplore 
identified a total of 152 records, distributed as follows: IEEE 
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Xplore (66), Scopus (49), and PubMed (37). This breadth reflects 
the growing body of research on AI applied to cardiovascular 
diagnosis, spanning medical imaging models to predictive 
algorithms based on signals and biomarkers. The substantial 
number of redundant entries and thematically peripheral 
publications aligns with patterns reported in other emerging 
areas of computational medicine.

Automatic removal of duplicates using Zotero resulted in 
the exclusion of 24 records, leaving 128 unique articles for the 
initial screening phase. This step reduced potential bias due 
to bibliographic repetition and ensured the uniqueness of 
each reference assessed. During title and abstract screening, 
26 records were excluded because they did not meet the 
eligibility criteria. The main reasons for exclusion were the 
absence of direct application to cardiovascular diagnosis, a 
purely technical orientation without clinical validation, or a 
lack of alignment with the study’s objective.

Full-text retrieval was attempted for 102 studies, of which 
five could not be obtained due to access restrictions or editorial 
availability. The remaining 97 articles were assessed for 
eligibility using predefined criteria related to methodological 
quality, diagnostic relevance, and reporting of performance 
metrics. In this phase, 59 records were excluded either for lack 
of empirical data (n = 23), incomplete information (n = 28), 
or insufficient methodological quality (n = 8). Ultimately, 38 
studies met all inclusion criteria (Figure 1).

Search results were refined through a structured review 
process. A standardised data extraction form was used to collect 
information on the type of AI model, diagnostic modality, sample 
size, study design, performance metrics, and validation approach. 
Bibliographic records were organised and cross-checked using 
Zotero, ensuring traceability and duplicate control.

The information was organised according to the three principal 
diagnostic dimensions: cardiovascular imaging, cardiac signals, 

Figure 1. Identification of studies through databases and records.
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and biomarkers. A qualitative critical analysis was undertaken 
to identify patterns in model performance, methodological 
consistency, and degree of clinical maturity. The synthesis aimed 
to integrate the evidence through an interpretative lens, assessing 
model interpretability, interoperability, and generalisability beyond 
their technical metrics.

Results

Imaging-based diagnosis
Advances in cardiovascular imaging have progressively 
enhanced the precision and efficiency of clinical evaluation, 
particularly in echocardiography, magnetic resonance 
imaging (MRI), computed tomography (CT), and multimodal 
approaches. In echocardiography, improvements in automatic 
segmentation of cardiac chambers and valves have surpassed 
traditional performance benchmarks, demonstrating notable 
robustness to anatomical variability and image quality. A U-Net-
based model incorporating ASPP modules achieved an F1-score 
of 0.91 and a Dice coefficient of 0.9284, suggesting that these 
tools may be approaching readiness for clinical integration (14). 
In an analysis of 15,000 studies, automated segmentation of the 
left ventricle enabled highly accurate estimation of the ejection 
fraction (EF), with a 93% success rate in view identification, 
although performance declined in the presence of atrial 
fibrillation and low-quality images (15).

Complementary developments include an adversarial 
model that achieved Dice coefficients above 86% across multiple 
cardiac chambers, with a volume correlation of 0.94 relative to 
manual segmentation (16). Other approaches, such as trilateral 
attention networks, have demonstrated real-time segmentation 
and quantification capabilities, outperforming expert readers 
across four independent datasets (17). Additionally, the 
incorporation of automated quality-control systems increased 
the proportion of usable frames to 96%, further strengthening 
the feasibility of clinical implementation (18).

Automated detection of ventricular dysfunction has also 
achieved noteworthy progress. A multicentre study involving 
more than 147,000 patients reported an AUC of 0.94 for reduced 
left ventricular EF and 0.84 for right ventricular dysfunction, 
with low absolute error compared with reference standards 
(19). Another analysis of over 200,000 individuals showed that 
electrocardiography (ECG) can predict filling pressures and grades 
of left ventricular diastolic dysfunction with AUCs exceeding 0.91, 
comparable to echocardiographic performance (20). In a more 
accessible setting, the combination of phonocardiography and 
ECG using wearable patches achieved an AUROC of up to 0.91, 
with sensitivities above 90%, underscoring its utility in resource-
limited environments (21). Multimodal integration of auscultation 
and ECG provided further benefit, yielding AUCs of 0.75 in both 
internal and external cohorts, confirming that combining sensors 
can enhance the detection of ventricular dysfunction (22).

MRI and CT have provided new avenues for detecting and 
quantifying cardiovascular disease. In ischaemic heart disease, 

deep neural networks optimised using the Levenberg-Marquardt 
algorithm achieved an accuracy of 86.39% and an AUC of 0.93 
for myocardial ischaemia detection, with good correlation in 
ventricular volume estimation (23). Complementarily, AI-assisted 
coronary CT angiography demonstrated a sensitivity of 75% 
and a specificity of 70% compared with invasive angiography, 
with a particularly high negative predictive value in women 
and performance surpassing that of single-photon emission 
computed tomography (SPECT) (24). For fibrosis and viability 
assessment, a native CT-based algorithm showed significant 
correlation with MRI late-gadolinium enhancement (r = 0.77-
0.81), with near-perfect reproducibility, although validated 
in a relatively small cohort (25). Meanwhile, cine-MRI analysis 
reached validation accuracies of 89%, but performance 
dropped to 70% in external testing, underscoring the need for 
further optimisation (26). Other methods, such as support vector 
machines applied to post-contrast MRI, achieved accuracies of 
71% and sensitivities of 72%, outperforming deep networks 
in some scenarios (27). Texture analysis in echocardiography 
yielded agreement rates of up to 76% compared with MRI, with 
improved performance in transmural scarring and after contrast 
administration, suggesting potential utility in post-infarction 
assessment (28).

Integration of imaging modalities with additional 
sources of information has emerged as a particularly 
promising strategy. Fusion of coronary CT angiography 
and MRI using an XGBoost model achieved an AUC of 
0.86, with external validations reporting values up to 0.92, 
outperforming traditional clinical cardiovascular risk scores (11). 
DenseResNet architectures applied to combined MRI, CT, and 
echocardiography yielded an accuracy of 98.4%, with both 
sensitivity and specificity exceeding 97%, clearly surpassing 
unimodal models (29). In a more modest approach, late fusion 
of ECG data and clinical records achieved an accuracy of 72.2%, 
though its performance was constrained by limited sample 
size (30). Finally, the integration of echocardiography, ECG, and 
biochemical parameters reached an accuracy of 89.87%, with a 
recall of 91.20% and an F1-score of 89.13%, findings validated 
in clinical cohorts that support the real-world applicability of 
such multimodal algorithms (31) (Table 1).

Signal-based diagnosis
Advances in cardiac signal analysis have opened an increasingly 
broad landscape for the non-invasive diagnosis of diverse 
cardiovascular conditions. In the field of ECG analysis, AI models 
have shown remarkable capability for the early detection of 
atrial fibrillation. A retrospective study including more than 
135,000 ECG recordings reported that both classical algorithms 
and deep learning models achieved sensitivities of 90%; 
however, specificity was higher with deep learning, reaching 
69% compared with 62% for conventional models, using 
cardiologist interpretation as the reference standard (32).

The development of predictive models has further 
expanded the scope of these technologies. In a cohort of more 
than 318,000 patients and over half a million ECGs, a deep 
learning model trained to predict paroxysmal atrial fibrillation 



AI and multimodal cardiovascular diagnostics Ramos-Zaga FA

234 Arch Peru Cardiol Cir Cardiovasc. 2025;6(4):230-238. doi: 10.47487/apcyccv.v6i4.532.

in individuals with normal sinus rhythm achieved an AUROC 
of 0.905 ± 0.007 for one-month prediction, incorporating 
explainable techniques that enabled interpretation of the 
contributions of different waveform segments (33).

Other approaches have focused on integrating classical 
ECG parameters, such as P-wave morphology and heart rate 
variability. Using this strategy, an ensemble learning model 
achieved an accuracy of 92%, sensitivity of 88%, and specificity of 
96%, with an AUROC of 0.911 in public datasets, demonstrating 
that stacking can outperform other combinatory methods (34). In 
a different line of work, training convolutional neural networks 
on tens of thousands of Holter segments yielded sensitivities 
of 97.1% and specificities of 94.5%, with an AUROC close to 

0.99. The use of Grad-CAM enabled validation of the clinical 
coherence of the regions highlighted by the model, supporting 
the robustness of this approach in real-world settings (35).

The application of ECG analysis to the detection of 
ischaemic heart disease has shown consistent results across 
multiple settings. In one of the most widely used datasets for 
this purpose, a support vector machine (SVM) model achieved 
an accuracy of 97.98% in classifying ischaemic segments, 
demonstrating its utility for large-scale analysis, although 
clinical cohort validation is still needed (36). In a study combining 
ECG and vectorcardiography (VCG), accuracy reached 90.3%, 
with equivalent sensitivities and specificities and an AUC of 
0.814 in external cohorts, confirming adequate generalisability 

Study group Predominant models Modality / data type Learning Validation strategy

Echocardiographic 
segmentation and 
quantification (14–18)

CNN (U-Net, attention-
based variants, and GAN)

2D echocardiography 
images

Supervised and 
semi-supervised

Cross-validation and 
external validation 

across multiple 
datasets

Ventricular dysfunction 
detection and functional 
prediction (19–22)

Deep CNN and 
multimodal models (ECG 

+ phonocardiogram)

2D images and 1D 
signals Supervised Multicentre and 

external validations

Structural diagnosis using MRI 
and CT (23–28)

CNN, SVM, and ensemble 
algorithms 2D and 3D images Supervised Internal and external 

validation

Multimodal integration (11, 29–31) DenseResNet, XGBoost, 
and ensemble methods

Combined MRI, CT, 
echocardiography, 

ECG, and biomarkers
Supervised External and clinical 

validations

Table 1. AI models applied to cardiovascular imaging diagnosis

CNN: convolutional neural networks. SVM: support vector machine. MRI: magnetic resonance imaging. CT: cardiac computed tomography. ECG: electrocardiogram.

Study group Predominant 
models

Modality / data 
type Learning Validation strategy

Atrial fibrillation detection and 
prediction (32–35)

CNN, recurrent 
neural networks 
(RNN/LSTM), and 

ensemble learning

ECG and Holter 
recordings (1D 

signals)

Supervised 
and partially 
explainable

Internal and external 
validations, including 

some multicentre studies

Ischemic heart disease diagnosis 

(36–38)

SVM, CNN, and 
hybrid ECG–VCG 

models

ECG and 
vectorcardiography Supervised

Cross-validation and 
multicentre validation 

against coronary 
angiography

Valvular disease identification 
using phonocardiograms (39–42)

CNN, Vision 
Transformer, and self-

supervised models

Digital 
phonocardiograms

Supervised and 
self-supervised

Prospective and real-
world validation

Advanced murmur analysis and 
hierarchical classification (43–45)

CNN with transfer 
learning, multitask 
models, and SHAP

Mel-
spectrograms and 

phonocardiograms

Supervised with 
interpretability

Internal and external 
validations using 

echocardiography as 
reference

Table 2. AI models applied to cardiac signal-based diagnosis

CNN: convolutional neural networks. RNN: recurrent neural network. LSTM: long short-term memory. SVM: support vector machine. ECG: electrocardiogram. VCG: vectorcar-
diogram.
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(37). Multicentre validation in 595 patients further supported the 
applicability of machine learning-assisted VCG, with sensitivities 
exceeding 97% in men and 90% in women, and consistent 
cross-validation against coronary angiography (38).

Phonocardiogram analysis has likewise shown substantial 
progress in the identification of valvular heart disease. In a 
multicentre study involving nearly 500 patients, sensitivities 
ranged from 71.4% to 100% and specificities from 83.5% to 
100%, with optimal performance for mitral stenosis, where 100% 
was achieved across all metrics, validated prospectively against 
echocardiography (39). The incorporation of mobile-device 
signals and self-supervised learning techniques increased 
accuracy to above 99.4%, even under noisy conditions, opening 
the door to large-scale screening in mobile health settings 
(40). Across model architectures, Vision Transformer-based 
approaches achieved an accuracy of 99.90% and an F1-score 
of 99.95%, outperforming more traditional methods and 
highlighting the advantages of attention mechanisms (41). In a 
real-world clinical scenario, an AI-enabled digital stethoscope 
achieved a sensitivity of 94.1%, markedly higher than the 
41.2% obtained by primary care physicians, albeit with lower 
specificity, reinforcing its potential role in early detection and 
selective referral (42).

Analysis of cardiac murmurs with direct correlation to 
echocardiography has demonstrated utility in both paediatric 
and adult populations. In a prospective cohort of 116 
children, classical models achieved accuracies above 90% for 
distinguishing organic murmurs associated with congenital 
heart disease, with direct validation against echocardiography 
(43). In a more advanced framework, hierarchical multitask 
models trained on public datasets enabled not only murmur 
detection and grading but also risk estimation, with 
interpretability provided through SHAP (Shapley additive 
explanations), making them a potentially valuable tool 
for optimising referral pathways (44). Finally, the use of mel-
spectrograms processed through transfer-learning networks 
yielded rapid and robust classifications of murmur presence and 

severity, with explainability supported by Occlusion Sensitivity, 
demonstrating their value as a complementary screening 
method to echocardiography (45) (Table 2).

Biomarker-based diagnosis
The study of biomarkers in cardiovascular diagnosis has evolved 
toward the integration of machine learning methods capable 
of handling large volumes of clinical and laboratory data. In a 
comparative analysis including eight classical and ensemble 
algorithms, extensive preprocessing, comprising normalisation, 
balancing, and variable selection, enabled accuracies exceeding 
98%, confirming the value of combining multiple techniques in 
large and heterogeneous cohorts (46).

In a smaller cohort of 224 patients, evaluation of six 
different algorithms demonstrated the feasibility of using 
machine learning for preventive diagnosis based on laboratory 
data. Although detailed numerical metrics were not reported, 
the findings suggest that this approach may hold clinical 
utility; however, the absence of extensive validation limits its 
standardisation in routine practice (47).

The potential of ensemble models was also evident in an 
analysis of 100 patients, where five algorithms were applied 
to basic clinical variables such as age, blood pressure, and 
cholesterol levels. Gradient Boosting achieved the highest 
accuracy at 92.5%, outperforming Random Forest and 
other approaches. However, the small sample size limits the 
generalisability of these findings and underscores the need for 
studies with greater statistical power (48).

Another study explored dimensionality reduction applied 
to 303 records comprising 13 clinical variables, optimising 
classification performance across several models. The 
k-nearest neighbours (KNN) algorithm demonstrated superior 
performance, with accuracies of 83.8% in training and 80% in 
testing, supported by 10-fold cross-validation. These findings 
position KNN as a useful tool in clinical settings working with 
structured data, although there remains room for improvement 
compared with more complex algorithms (49).

Study group Predominant models Modality / data 
type Learning Validation strategy

Classical and ensemble models 
using clinical and laboratory data 

(46,47)

Decision trees, Random 
Forest, Gradient Boosting, and 

combined models

Structured 
clinical variables Supervised Internal cross-

validation

Algorithms in small cohorts and 
structured datasets  (48,49)

Gradient Boosting, Random 
Forest, and KNN

Basic clinical 
data (age, 

blood pressure, 
cholesterol)

Supervised 10-fold cross-
validation

Large-scale proteomic and clinical 
integration  (6)

Explainable Boosting Machine 
and LightGBM

Proteomic + 
clinical data

Supervised with 
interpretability

Validation in a 
population biobank 

(UK Biobank)

Table 3. AI models applied to cardiovascular biomarker–based diagnosis

KNN: k-nearest neighbours. LightGBM: Light Gradient Boosting Machine. BP: blood pressure. UK: United Kingdom.
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Integration of proteomic biomarkers with clinical data has 
broadened the landscape for cardiovascular risk prediction. 
In an analysis of the UK Biobank incorporating blood-based 
proteomic profiles and clinical variables, the use of an 
Explainable Boosting Machine yielded an AUROC of 0.767 and 
an AUPRC of 0.2405 when relying solely on proteomic data. 
The addition of clinical information improved these metrics 
to 0.785 and 0.2835, respectively, outperforming traditional 
models as well as machine learning algorithms such as 
LightGBM (6) (Table 3).

Discussion

Advances in AI applied to cardiovascular diagnosis are 
demonstrating increasing clinical impact, albeit with nuances 
regarding their applicability and reliability. In echocardiography, 
automatic chamber segmentation has achieved precision metrics 
that consistently surpass manual practice, with Dice coefficients 
approaching 0.93 and the ability to automatically compute EF 
in large cohorts. These findings suggest utility in routine clinical 
practice, particularly for reducing interobserver variability, although 
limitations persist in patients with atrial fibrillation or low-quality 
images (14,15).

Automated detection of ventricular dysfunction using 
non-invasive data has demonstrated AUC values exceeding 
0.90 in populations of more than 100,000 patients, representing 
a substantial advance in diagnostic scalability. Its greatest 
strength lies in its capacity for population-level screening, 
although specificity in clinically complex subgroups may limit 
applicability for individual decision-making (19,20).

In MRI and CT, deep learning algorithms and kernel-based 
methods have achieved accuracies above 85% for detecting 
ischaemia and quantifying fibrosis. However, performance 
drops in external validations and heterogeneity in sample sizes 
highlight the need for multicentre validation protocols before 
clinical adoption. Their main contribution lies in enhancing 
objectivity and reproducibility, although their reliability still 
depends on methodological standardisation (23,26).

Multimodal approaches have been the most consistent 
in terms of clinical impact. Fusion of imaging modalities 
with clinical data has yielded AUC values approaching 0.92, 
significantly outperforming conventional risk scores and 
confirming added value for prognostic stratification. The ability 
to integrate diverse sources of information marks a step toward 
decision-support models with genuine applicability in hospital 
settings (11,29).

Signal analysis has shown outstanding performance in 
atrial fibrillation, with AUROC values nearing 0.99 in Holter 
recordings and explainability consistent with clinical criteria, 
supporting its reliability and opening opportunities for early 
detection in primary care. Nonetheless, generalisation across 
different devices and clinical contexts remains a challenge 
(33,35). In ischaemic heart disease, ECG- and VCG-based models 
achieved accuracies above 90% with validation against coronary 
angiography, demonstrating applicability in screening contexts, 

although translation into routine clinical practice will require 
prospective validation (37,38).

AI-assisted phonocardiography has surpassed the 
diagnostic accuracy of general practitioners in the assessment 
of valvular heart disease, achieving sensitivities above 94%. 
Its reliability is strengthened by prospective validations 
against echocardiography, positioning these tools as valuable 
complements in primary care and mobile-health (mHealth) 
environments, with substantial potential for large-scale 
screening (39,42).

In the field of biomarkers, machine learning models applied 
to laboratory data achieved accuracies close to 98% in large 
cohorts, with consistent cross-validation results supporting 
their value in preventive contexts. Nonetheless, small sample 
sizes in some studies limit the reliability of certain findings 
(46,48). The integration of proteomic data with clinical variables 
in population-based cohorts improved cardiovascular risk 
prediction and enabled interpretable identification of candidate 
biomarkers, reinforcing their applicability in personalised 
medicine and primary prevention strategies (6).

The application of AI to cardiovascular diagnosis represents 
a significant step toward more precise, accessible, and efficient 
medicine, although persistent challenges continue to shape 
its clinical implementation. The medical implications of this 
technology include the potential to standardise diagnostic 
interpretation, optimise early disease detection, and reduce 
interobserver variability. However, its real impact will depend 
on multicentre validations capable of ensuring reproducibility 
across heterogeneous populations and diverse care settings.

On the other hand, the lack of explainability in some 
models continues to limit their acceptance among healthcare 
professionals, as it hinders clinical interpretation and shared 
decision-making. Moreover, evidence gaps remain regarding 
longitudinal performance, interoperability with clinical systems, 
and evaluation of hard outcomes. Overcoming these limitations 
will require prospective studies, algorithmic transparency, and 
ethical and regulatory integration that support the responsible 
use of AI in cardiovascular practice.

Given the narrative nature of this article, several 
methodological limitations arise, including potential publication 
bias and heterogeneity among the included studies. No meta-
analysis or formal risk-of-bias assessment was conducted; 
therefore, the findings should be interpreted as a critical 
synthesis of the available evidence. These constraints limit 
quantitative inference, although they allow the identification 
of key trends and evidence gaps relevant for future clinical 
research.

In conclusion, performance metrics demonstrate 
transformative potential in terms of scalability, diagnostic 
precision, and efficiency. However, full clinical applicability 
depends on multicentre validation, interoperability with real-
world workflows, and evidence of impact on clinical outcomes. 
The reliability of these models is strengthened by explainability 
and consistent performance in external cohorts, both essential 
conditions for their integration into clinical practice guidelines.
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According to the findings, AI applied to cardiovascular 
diagnosis shows substantial clinical potential, but its full 
adoption requires rigorous multicentre validations that confirm 
the reproducibility of results across diverse populations and 
real-world care settings. Likewise, model explainability is an 
essential requirement for strengthening clinical trust, facilitating 
interpretation of algorithmic decisions, and ensuring ethical and 
safe integration into medical practice. The future advancement 
of the field will depend on a balanced combination of technical 
performance, transparency, and robust clinical evidence.
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