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ABSTRACT

Objective. Evaluate the impact and clinical applicability of artificial intelligence (Al) models in cardiovascular
diagnosis, assessing their potential to improve diagnostic accuracy, operational efficiency, and reliability
compared with conventional methods. Materials and Methods. A critical review of the recent literature was
conducted, encompassing retrospective studies, multicenter trials, and external validations that employed
machine learning and deep learning algorithms applied to imaging modalities, electrocardiographic and
phonocardiographic signals, as well as clinical and proteomic biomarkers. Results. Evidence indicates that
in cardiac imaging, automated segmentation and ventricular dysfunction detection achieved accuracy
metrics exceeding 90%, suggesting readiness for clinical integration. In cardiac signals, deep learning models

demonstrated area under the ROC curve values of approximately 0.99 for predicting atrial fibrillation and
ischemic heart disease, further supported by explainability techniques. Regarding biomarkers, ensemble
Conflicts of interest models achieved diagnostic accuracies above 95%, and the integration of proteomic and clinical data
None. substantially enhanced predictive performance. Nonetheless, decreased performance in external validations,
limited generalizability to heterogeneous populations, and clinicians’ reluctance due to insufficient
explainability remain major barriers. Conclusion. Artificial intelligence in cardiovascular diagnostics holds
transformative potential by improving accuracy, reducing interobserver variability, and expanding access
in resource-limited settings. However, its consolidation into routine practice requires robust multicenter
validations, seamless interoperability with clinical workflows, and strengthened explainability, prerequisites
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RESUMEN

Inteligencia artificial y enfoques diagndsticos multimodales
en enfermedad cardiovascular

Objetivo. Evaluar el impacto y la aplicabilidad clinica de los modelos de inteligencia artificial (IA) en el
diagnostico cardiovascular, analizando su capacidad para mejorar la precision, la eficiencia operativa y
la confiabilidad en comparaciéon con métodos convencionales. Materiales y métodos. Se realiz6 una
revision critica de la literatura reciente, incluyendo estudios retrospectivos, multicéntricos y validaciones
externas que aplicaron algoritmos de machine learning y deep learning a modalidades de imagen, sefales
electrocardiogréficas y fonocardiogréficas, asi como biomarcadores clinicos y proteémicos. Resultados. Los
hallazgos muestran que en iméagenes cardiacas, la segmentacién automética y la deteccion de disfuncion
ventricular alcanzan métricas de precision superiores al 90%, con potencial de integracién clinica. En
senales cardiacas, el deep learning ha demostrado areas bajo la curva ROC cercanas a 0,99 en la prediccion
de fibrilacién auricular y cardiopatia isquémica, reforzadas por técnicas explicables. En biomarcadores, los
modelos de ensemble superaron el 95% de precision diagnoéstica y la integracién de protedmica con datos
clinicos incremento la capacidad predictiva. Sin embargo, se observé una disminucion en el desempefio
de validaciones externas, limitaciones en la generalizacién a poblaciones heterogéneas y reticencia por la
escasa explicabilidad de algunos algoritmos. Conclusién. La IA aplicada al diagnéstico cardiovascular exhibe
un potencial transformador al mejorar la precision diagndstica, reducir la variabilidad y ampliar el acceso a
entornos con recursos limitados. No obstante, su consolidacion en la practica clinica requiere validaciones
multicéntricas, interoperabilidad con flujos clinicos reales y fortalecimiento de la explicabilidad, condiciones
esenciales para su inclusion en guias de practica clinica y medicina de precision.

Palabras clave: Inteligencia Artificial; Aprendizaje Automatico; Técnicas de Diagnéstico Cardiovascular;
Medicina de Precisién (Fuente: DeCS-BIREME).
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Introduction

Cardiovascular diagnostics are undergoing a transitional phase
driven by the integration of artificial intelligence (Al) tools
across multiple levels of clinical practice. The convergence
of advances in imaging modalities, cardiac signal analysis,
and biomarker technologies has created unprecedented
opportunities to enhance diagnostic accuracy, efficiency,
and scalability ™. This evolution, however, is not occurring
in isolation: it is shaped by the rising global prevalence of
cardiovascular diseases and the imperative to optimise
resources within increasingly strained health systems.

Interest in applying algorithms to the medical field dates
back to the earliest expert systems @, later evolving into
machine learning methods and, more recently, deep learning
approaches applied to imaging and physiological signals ©. In
cardiology, these strategies have enabled notable advances,
including the automated detection of ventricular dysfunction
@, the prediction of atrial fibrillation from sinus-rhythm
electrocardiograms ), and the integration of proteomic
biomarkers with large-scale clinical datasets ©.

Nonetheless, a persistent gap remains between the
technical performance of these models and their clinical
maturity. Despite outstanding metrics in controlled research
settings, multicentre studies have shown substantial declines
in performance when algorithms are applied to heterogeneous
populations or to imaging and signal data of variable quality
@), This issue, described in the computer science literature as a
generalisation challenge ©, is particularly salient in cardiology,
where the wide diversity of phenotypes and comorbidities
demands methodological robustness and flexibility.

The rationale for advancing this field lies in the fact that
current developments have yet to translate into routine
clinical practice. Outstanding performance metrics reported
in retrospective studies contrast with the limited availability
of longitudinal, external, and multicentre validations needed
to demonstrate true clinical utility ©. In addition, the lack of
sufficient interpretability reinforces clinicians’ reluctance to
adopt “black-box” algorithms, hindering their integration into
decision-making processes.

The practical implications of this evolution are
considerable. An Al system capable of robustly interpreting
images, electrocardiograms, and biomarkers could not only
optimise diagnostic processes in specialised settings, but also
expand access in resource-limited contexts through portable
devices and automated analyses 9. Likewise, the integration
of multimodal information would enable clinicians to
address clinical complexity from a more holistic perspective,
overcoming the constraints of unimodal approaches .

The issues outlined above intersect with broader
contemporary challenges in medicine, including the need
to develop ethical and transparent models, to prevent
algorithmic bias, and to ensure that technological innovations

do not exacerbate existing structural inequalities 2. They
also align with the priorities of precision medicine, which
aims to integrate molecular, clinical, and population-level
data to individualise care 3. Thus, the debate surrounding
the maturity of Al in cardiology extends beyond technical
considerations and moves into spheres of social, ethical, and
economic relevance.

Within this context, the aim of this work is to critically
examine recent advances in Al-assisted cardiovascular
diagnostics, encompassing imaging modalities, cardiac
signals, and biomarkers, in order to establish a reference
framework for assessing their maturity, accuracy, and clinical
applicability across diverse settings. The contribution of this
article lies in providing a synthesis that highlights both current
opportunities and limitations, thereby paving the way for a
more robust, interpretable, and equitable integration of Al
into cardiovascular clinical practice.

Materials and methods

This article adopts a critical narrative review format following the
SANRA (Scale for the Assessment of Narrative Review Articles)
framework, as its primary aim is to integrate and interpret recent
evidence on Al in cardiovascular diagnostics, with particular
attention to its clinical applicability and degree of technological
maturity. This approach enables the findings to be contextualised
within a broader theoretical and clinical framework, moving
beyond the simple aggregation of quantitative results and
offering a more conceptual understanding of the phenomenon.

The methodological purpose was to identify, examine, and
critically discuss recent advances in the use of Al for cardiovascular
diagnosis through imaging, signal analysis, and biomarkers.
The review aims to assess the robustness, interpretability, and
clinical applicability of these models, highlighting both their
achievements and their limitations in medical practice.

We included original studies (prospective, retrospective,
multicentre, or clinical) that met the following criteria: a)
application of Al models to cardiovascular diagnosis using
imaging, signal analysis, or biomarkers; b) reporting of
quantitative performance metrics (area under the curve [AUC],
sensitivity, specificity, F1-score, or others); and c) availability
of internal or external validation. Narrative reviews, editorials,
conference abstracts, conceptual studies without empirical
data, and articles lacking diagnostic metrics or a validated
clinical application were excluded.

The literature search was conducted between January and
August 2025. Combinations of controlled and uncontrolled
terms were applied using Boolean operators: (“artificial
intelligence” OR “machine learning” OR “deep learning”)
AND (“cardiovascular diagnosis” OR “cardiac imaging” OR
“electrocardiogram” OR “biomarkers”). Articles published
between 2018 and 2025 in English or Spanish were included
to capture the most influential contemporary literature.

The initial search across Scopus, PubMed, and IEEE Xplore
identified a total of 152 records, distributed as follows: IEEE
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Xplore (66), Scopus (49), and PubMed (37).This breadth reflects
the growing body of research on Al applied to cardiovascular
diagnosis, spanning medical imaging models to predictive
algorithms based on signals and biomarkers. The substantial
number of redundant entries and thematically peripheral
publications aligns with patterns reported in other emerging
areas of computational medicine.

Automatic removal of duplicates using Zotero resulted in
the exclusion of 24 records, leaving 128 unique articles for the
initial screening phase. This step reduced potential bias due
to bibliographic repetition and ensured the uniqueness of
each reference assessed. During title and abstract screening,
26 records were excluded because they did not meet the
eligibility criteria. The main reasons for exclusion were the
absence of direct application to cardiovascular diagnosis, a
purely technical orientation without clinical validation, or a
lack of alignment with the study’s objective.

Full-text retrieval was attempted for 102 studies, of which
five could not be obtained due to access restrictions or editorial
availability. The remaining 97 articles were assessed for
eligibility using predefined criteria related to methodological
quality, diagnostic relevance, and reporting of performance
metrics. In this phase, 59 records were excluded either for lack
of empirical data (n = 23), incomplete information (n = 28),
or insufficient methodological quality (n = 8). Ultimately, 38
studies met all inclusion criteria (Figure 1).

Search results were refined through a structured review
process. A standardised data extraction form was used to collect
information on the type of Al model, diagnostic modality, sample
size, study design, performance metrics, and validation approach.
Bibliographic records were organised and cross-checked using
Zotero, ensuring traceability and duplicate control.

The information was organised according to the three principal
diagnostic dimensions: cardiovascular imaging, cardiac signals,

c Records identified )
2 (n=152) Records removed before screening:
E IEEE (n = 66) > Duplicate records removed
‘qc‘J Scopus (n = 49) (n=24)
k] PubMed (n =37)
\4 Y
Records screened > Records excluded**
(n=128) (n=26)
\4 \ 4
Records sought for retrieval > Records not retrieved
(n=102) Access issues (n =5)
2 4
< A 4
9] Records excluded:
1% ..
n Records assessed for eligibility > Lacked(empzlg)cal data
(n=97) n=
Incomplete data
(n=28)
Poor methodological quality
(n=8).
\4
° L . .
3 Studies included in the review
3 (n=38)
[
£

Figure 1. Identification of studies through databases and records.
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and biomarkers. A qualitative critical analysis was undertaken
to identify patterns in model performance, methodological
consistency, and degree of clinical maturity. The synthesis aimed
to integrate the evidence through an interpretative lens, assessing
model interpretability, interoperability, and generalisability beyond
their technical metrics.

Results

Imaging-based diagnosis

Advances in cardiovascular imaging have progressively
enhanced the precision and efficiency of clinical evaluation,
particularly in echocardiography, magnetic resonance
imaging (MRI), computed tomography (CT), and multimodal
approaches. In echocardiography, improvements in automatic
segmentation of cardiac chambers and valves have surpassed
traditional performance benchmarks, demonstrating notable
robustness to anatomical variability and image quality. A U-Net-
based model incorporating ASPP modules achieved an F1-score
of 0.91 and a Dice coefficient of 0.9284, suggesting that these
tools may be approaching readiness for clinical integration %,
In an analysis of 15,000 studies, automated segmentation of the
left ventricle enabled highly accurate estimation of the ejection
fraction (EF), with a 93% success rate in view identification,
although performance declined in the presence of atrial
fibrillation and low-quality images '),

Complementary developments include an adversarial
model thatachieved Dice coefficients above 86% across multiple
cardiac chambers, with a volume correlation of 0.94 relative to
manual segmentation ©, Other approaches, such as trilateral
attention networks, have demonstrated real-time segmentation
and quantification capabilities, outperforming expert readers
across four independent datasets 7. Additionally, the
incorporation of automated quality-control systems increased
the proportion of usable frames to 96%, further strengthening
the feasibility of clinical implementation *®.

Automated detection of ventricular dysfunction has also
achieved noteworthy progress. A multicentre study involving
more than 147,000 patients reported an AUC of 0.94 for reduced
left ventricular EF and 0.84 for right ventricular dysfunction,
with low absolute error compared with reference standards
19, Another analysis of over 200,000 individuals showed that
electrocardiography (ECG) can predict filling pressures and grades
of left ventricular diastolic dysfunction with AUCs exceeding 0.91,
comparable to echocardiographic performance ©%. In a more
accessible setting, the combination of phonocardiography and
ECG using wearable patches achieved an AUROC of up to 0.91,
with sensitivities above 90%, underscoring its utility in resource-
limited environments ©". Multimodal integration of auscultation
and ECG provided further benefit, yielding AUCs of 0.75 in both
internal and external cohorts, confirming that combining sensors
can enhance the detection of ventricular dysfunction 2.

MRI and CT have provided new avenues for detecting and
quantifying cardiovascular disease. In ischaemic heart disease,

deepneuralnetworks optimised using the Levenberg-Marquardt
algorithm achieved an accuracy of 86.39% and an AUC of 0.93
for myocardial ischaemia detection, with good correlation in
ventricular volume estimation ©3. Complementarily, Al-assisted
coronary CT angiography demonstrated a sensitivity of 75%
and a specificity of 70% compared with invasive angiography,
with a particularly high negative predictive value in women
and performance surpassing that of single-photon emission
computed tomography (SPECT) @, For fibrosis and viability
assessment, a native CT-based algorithm showed significant
correlation with MRI late-gadolinium enhancement (r = 0.77-
0.81), with near-perfect reproducibility, although validated
in a relatively small cohort @%. Meanwhile, cine-MRI analysis
reached validation accuracies of 89%, but performance
dropped to 70% in external testing, underscoring the need for
further optimisation ?9. Other methods, such as support vector
machines applied to post-contrast MRI, achieved accuracies of
71% and sensitivities of 72%, outperforming deep networks
in some scenarios @7, Texture analysis in echocardiography
yielded agreement rates of up to 76% compared with MRI, with
improved performance in transmural scarring and after contrast
administration, suggesting potential utility in post-infarction
assessment @9,

Integration of imaging modalities with additional
sources of information has emerged as a particularly
promising strategy. Fusion of coronary CT angiography
and MRI using an XGBoost model achieved an AUC of
0.86, with external validations reporting values up to 0.92,
outperforming traditional clinical cardiovascular risk scores .
DenseResNet architectures applied to combined MRI, CT, and
echocardiography yielded an accuracy of 98.4%, with both
sensitivity and specificity exceeding 97%, clearly surpassing
unimodal models ®®. In a more modest approach, late fusion
of ECG data and clinical records achieved an accuracy of 72.2%,
though its performance was constrained by limited sample
size ®9, Finally, the integration of echocardiography, ECG, and
biochemical parameters reached an accuracy of 89.87%, with a
recall of 91.20% and an F1-score of 89.13%, findings validated
in clinical cohorts that support the real-world applicability of
such multimodal algorithms &V (Table 1).

Signal-based diagnosis

Advances in cardiac signal analysis have opened an increasingly
broad landscape for the non-invasive diagnosis of diverse
cardiovascular conditions. In the field of ECG analysis, Al models
have shown remarkable capability for the early detection of
atrial fibrillation. A retrospective study including more than
135,000 ECG recordings reported that both classical algorithms
and deep learning models achieved sensitivities of 90%;
however, specificity was higher with deep learning, reaching
69% compared with 62% for conventional models, using
cardiologist interpretation as the reference standard ©2.

The development of predictive models has further
expanded the scope of these technologies. In a cohort of more
than 318,000 patients and over half a million ECGs, a deep
learning model trained to predict paroxysmal atrial fibrillation
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Table 1. Al models applied to cardiovascular imaging diagnosis

Study group Predominant models Modality / data type Learning Validation strategy
Echocardioaranhic Cross-validation and
grap CNN (U-Net, attention- 2D echocardiography Supervised and external validation
segmentation and . . . . .
e based variants, and GAN) images semi-supervised across multiple
quantification (48
datasets
Ventricular dysfunction Deep CNN and . )
detection and functional multimodal models (ECG 2D mages and 1D Supervised Multlcentr.e apd
92 . signals external validations
prediction (122 + phonocardiogram)
Structural diagnosis using MRl CNN, SVM, and ensemble . . Internal and external
and CT®2 algorithms 2D and 3D images Supenvised validation
Combined MRI, CT, .
Multimodal integration ("' 2-31) DenseResNet, XGBoost, echocardiography, Supervised External and cinical

and ensemble methods

validations

ECG, and biomarkers

CNN: convolutional neural networks. SVM: support vector machine. MRI: magnetic resonance imaging. CT: cardiac computed tomography. ECG: electrocardiogram.

in individuals with normal sinus rhythm achieved an AUROC
of 0.905 + 0.007 for one-month prediction, incorporating
explainable techniques that enabled interpretation of the
contributions of different waveform segments ©3.

Other approaches have focused on integrating classical
ECG parameters, such as P-wave morphology and heart rate
variability. Using this strategy, an ensemble learning model
achieved an accuracy of 92%, sensitivity of 88%, and specificity of
96%, with an AUROC of 0.911 in public datasets, demonstrating
that stacking can outperform other combinatory methods *. In
a different line of work, training convolutional neural networks
on tens of thousands of Holter segments yielded sensitivities
of 97.1% and specificities of 94.5%, with an AUROC close to

0.99. The use of Grad-CAM enabled validation of the clinical
coherence of the regions highlighted by the model, supporting
the robustness of this approach in real-world settings ©°.

The application of ECG analysis to the detection of
ischaemic heart disease has shown consistent results across
multiple settings. In one of the most widely used datasets for
this purpose, a support vector machine (SVM) model achieved
an accuracy of 97.98% in classifying ischaemic segments,
demonstrating its utility for large-scale analysis, although
clinical cohort validation is still needed ©9. In a study combining
ECG and vectorcardiography (VCG), accuracy reached 90.3%,
with equivalent sensitivities and specificities and an AUC of
0.814 in external cohorts, confirming adequate generalisability

Table 2. Al models applied to cardiac signal-based diagnosis

Predominant

Modality / data

Study group models type Learning Validation strategy
Atrial fibrillation detection and nce’:lxrlj‘e;lrs(e:g\/rvrg?l(ts ECG and Holter Supervised Internal and external

rediction 6239 (RNN/LSTM), and recordings (1D and partially validations, including
P L signals) explainable some multicentre studies

ensemble learning
Cross-validation and
Ischemic heart disease diagnosis hS\llal\r/iI;:ICE'\(lZ'é’—i/rgG ECG and Supervised multicentre validation
(36-38) y models vectorcardiography P against coronary
angiography
CNN, Vision

Valvular disease identification
using phonocardiograms -

Advanced murmur analysis and
hierarchical classification “>-#)

Transformer, and self-

supervised models

CNN with transfer
learning, multitask
models, and SHAP

Digital
phonocardiograms

Mel-
spectrograms and
phonocardiograms

Supervised and
self-supervised

Supervised with
interpretability

Prospective and real-
world validation

Internal and external
validations using
echocardiography as
reference

CNN: convolutional neural networks. RNN: recurrent neural network. LSTM: long short-term memory. SVM: support vector machine. ECG: electrocardiogram. VCG: vectorcar-

diogram.
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67, Multicentre validation in 595 patients further supported the
applicability of machine learning-assisted VCG, with sensitivities
exceeding 97% in men and 90% in women, and consistent
cross-validation against coronary angiography ©®.

Phonocardiogram analysis has likewise shown substantial
progress in the identification of valvular heart disease. In a
multicentre study involving nearly 500 patients, sensitivities
ranged from 71.4% to 100% and specificities from 83.5% to
100%, with optimal performance for mitral stenosis, where 100%
was achieved across all metrics, validated prospectively against
echocardiography ©9. The incorporation of mobile-device
signals and self-supervised learning techniques increased
accuracy to above 99.4%, even under noisy conditions, opening
the door to large-scale screening in mobile health settings
“0, Across model architectures, Vision Transformer-based
approaches achieved an accuracy of 99.90% and an F1-score
of 99.95%, outperforming more traditional methods and
highlighting the advantages of attention mechanisms “", In a
real-world clinical scenario, an Al-enabled digital stethoscope
achieved a sensitivity of 94.1%, markedly higher than the
41.2% obtained by primary care physicians, albeit with lower
specificity, reinforcing its potential role in early detection and
selective referral “2.

Analysis of cardiac murmurs with direct correlation to
echocardiography has demonstrated utility in both paediatric
and adult populations. In a prospective cohort of 116
children, classical models achieved accuracies above 90% for
distinguishing organic murmurs associated with congenital
heart disease, with direct validation against echocardiography
“).In a more advanced framework, hierarchical multitask
models trained on public datasets enabled not only murmur
detection and grading but also risk estimation, with
interpretability provided through SHAP (Shapley additive
explanations), making them a potentially valuable tool
for optimising referral pathways “4. Finally, the use of mel-
spectrograms processed through transfer-learning networks
yielded rapid and robust classifications of murmur presence and

severity, with explainability supported by Occlusion Sensitivity,
demonstrating their value as a complementary screening
method to echocardiography “* (Table 2).

Biomarker-based diagnosis

The study of biomarkers in cardiovascular diagnosis has evolved
toward the integration of machine learning methods capable
of handling large volumes of clinical and laboratory data. In a
comparative analysis including eight classical and ensemble
algorithms, extensive preprocessing, comprising normalisation,
balancing, and variable selection, enabled accuracies exceeding
98%, confirming the value of combining multiple techniques in
large and heterogeneous cohorts “9,

In a smaller cohort of 224 patients, evaluation of six
different algorithms demonstrated the feasibility of using
machine learning for preventive diagnosis based on laboratory
data. Although detailed numerical metrics were not reported,
the findings suggest that this approach may hold clinical
utility; however, the absence of extensive validation limits its
standardisation in routine practice 7.

The potential of ensemble models was also evident in an
analysis of 100 patients, where five algorithms were applied
to basic clinical variables such as age, blood pressure, and
cholesterol levels. Gradient Boosting achieved the highest
accuracy at 92.5%, outperforming Random Forest and
other approaches. However, the small sample size limits the
generalisability of these findings and underscores the need for
studies with greater statistical power “9.

Another study explored dimensionality reduction applied
to 303 records comprising 13 clinical variables, optimising
classification performance across several
k-nearest neighbours (KNN) algorithm demonstrated superior
performance, with accuracies of 83.8% in training and 80% in
testing, supported by 10-fold cross-validation. These findings
position KNN as a useful tool in clinical settings working with
structured data, although there remains room for improvement
compared with more complex algorithms “2,

models. The

Table 3. Al models applied to cardiovascular biomarker-based diagnosis

Study group Predominant models Modatl;;:;(e/ data Learning Validation strategy
Classical and ensemble models Decision trees, Random

- L . . Structured . Internal cross-
using clinical and laboratory data  Forest, Gradient Boosting,and . = - Supervised -
(4647) ] clinical variables validation

combined models
Basic clinical
Algorithms in small cohorts and Gradient Boosting, Random data (age, . 10-fold cross-
Supervised

structured datasets 849 Forest, and KNN

Large-scale proteomic and clinical

integration © and LightGBM

Explainable Boosting Machine

blood pressure, validation

cholesterol)

Validation in a
population biobank
(UK Biobank)

Proteomic +
clinical data

Supervised with
interpretability

KNN: k-nearest neighbours. LightGBM: Light Gradient Boosting Machine. BP: blood pressure. UK: United Kingdom.
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Integration of proteomic biomarkers with clinical data has
broadened the landscape for cardiovascular risk prediction.
In an analysis of the UK Biobank incorporating blood-based
proteomic profiles and clinical variables, the use of an
Explainable Boosting Machine yielded an AUROC of 0.767 and
an AUPRC of 0.2405 when relying solely on proteomic data.
The addition of clinical information improved these metrics
to 0.785 and 0.2835, respectively, outperforming traditional
models as well as machine learning algorithms such as
LightGBM © (Table 3).

Discussion

Advances in Al applied to cardiovascular diagnosis are
demonstrating increasing clinical impact, albeit with nuances
regarding their applicability and reliability. In echocardiography,
automatic chamber segmentation has achieved precision metrics
that consistently surpass manual practice, with Dice coefficients
approaching 0.93 and the ability to automatically compute EF
in large cohorts. These findings suggest utility in routine clinical
practice, particularly for reducing interobserver variability, although
limitations persist in patients with atrial fibrillation or low-quality
images (419,

Automated detection of ventricular dysfunction using
non-invasive data has demonstrated AUC values exceeding
0.90 in populations of more than 100,000 patients, representing
a substantial advance in diagnostic scalability. Its greatest
strength lies in its capacity for population-level screening,
although specificity in clinically complex subgroups may limit
applicability for individual decision-making (2.

In MRI and CT, deep learning algorithms and kernel-based
methods have achieved accuracies above 85% for detecting
ischaemia and quantifying fibrosis. However, performance
drops in external validations and heterogeneity in sample sizes
highlight the need for multicentre validation protocols before
clinical adoption. Their main contribution lies in enhancing
objectivity and reproducibility, although their reliability still
depends on methodological standardisation ?329,

Multimodal approaches have been the most consistent
in terms of clinical impact. Fusion of imaging modalities
with clinical data has yielded AUC values approaching 0.92,
significantly outperforming conventional risk scores and
confirming added value for prognostic stratification. The ability
to integrate diverse sources of information marks a step toward
decision-support models with genuine applicability in hospital
settings "%,

Signal analysis has shown outstanding performance in
atrial fibrillation, with AUROC values nearing 0.99 in Holter
recordings and explainability consistent with clinical criteria,
supporting its reliability and opening opportunities for early
detection in primary care. Nonetheless, generalisation across
different devices and clinical contexts remains a challenge
6335 |n ischaemic heart disease, ECG- and VCG-based models
achieved accuracies above 90% with validation against coronary
angiography, demonstrating applicability in screening contexts,

although translation into routine clinical practice will require
prospective validation ¢7:39),

Al-assisted phonocardiography has surpassed the
diagnostic accuracy of general practitioners in the assessment
of valvular heart disease, achieving sensitivities above 94%.
Its reliability is strengthened by prospective validations
against echocardiography, positioning these tools as valuable
complements in primary care and mobile-health (mHealth)
environments, with substantial potential for large-scale
screening 4942,

In the field of biomarkers, machine learning models applied
to laboratory data achieved accuracies close to 98% in large
cohorts, with consistent cross-validation results supporting
their value in preventive contexts. Nonetheless, small sample
sizes in some studies limit the reliability of certain findings
“648) The integration of proteomic data with clinical variables
in population-based cohorts improved cardiovascular risk
prediction and enabled interpretable identification of candidate
biomarkers, reinforcing their applicability in personalised
medicine and primary prevention strategies ©.

The application of Al to cardiovascular diagnosis represents
a significant step toward more precise, accessible, and efficient
medicine, although persistent challenges continue to shape
its clinical implementation. The medical implications of this
technology include the potential to standardise diagnostic
interpretation, optimise early disease detection, and reduce
interobserver variability. However, its real impact will depend
on multicentre validations capable of ensuring reproducibility
across heterogeneous populations and diverse care settings.

On the other hand, the lack of explainability in some
models continues to limit their acceptance among healthcare
professionals, as it hinders clinical interpretation and shared
decision-making. Moreover, evidence gaps remain regarding
longitudinal performance, interoperability with clinical systems,
and evaluation of hard outcomes. Overcoming these limitations
will require prospective studies, algorithmic transparency, and
ethical and regulatory integration that support the responsible
use of Al in cardiovascular practice.

Given the narrative nature of this article, several
methodological limitations arise, including potential publication
bias and heterogeneity among the included studies. No meta-
analysis or formal risk-of-bias assessment was conducted;
therefore, the findings should be interpreted as a critical
synthesis of the available evidence. These constraints limit
quantitative inference, although they allow the identification
of key trends and evidence gaps relevant for future clinical
research.

In  conclusion, performance
transformative potential in terms of scalability, diagnostic
precision, and efficiency. However, full clinical applicability
depends on multicentre validation, interoperability with real-
world workflows, and evidence of impact on clinical outcomes.
The reliability of these models is strengthened by explainability
and consistent performance in external cohorts, both essential
conditions for their integration into clinical practice guidelines.

metrics demonstrate
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According to the findings, Al applied to cardiovascular
diagnosis shows substantial clinical potential, but its full
adoption requires rigorous multicentre validations that confirm
the reproducibility of results across diverse populations and
real-world care settings. Likewise, model explainability is an
essential requirement for strengthening clinical trust, facilitating
interpretation of algorithmic decisions, and ensuring ethical and
safe integration into medical practice. The future advancement
of the field will depend on a balanced combination of technical
performance, transparency, and robust clinical evidence.
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